
Priority Queue Algorithms

We implement priority queues in Binary Heaps stored in arrays. The
Heap Property is that the value at each node is less than or equal to
the values of its children.

A heap with n values will be stored in indices 1 through n of the array.

If a value is at index j of the array, its parent is at index j/2 (integer
division; ignore any remainder. E.g. 7/2 is 3) and its children are at
indices 2*j and 2*j+1.

Here is a typical heap and its array

3

10 45

12 11

18 25

48 50

3 10 45 12 11 48 50 18 25

2

1

3

4 5 6
7

8 9

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The peek method returns the smallest value in the priority queue,
which is always at the root. If the queue is empty throw an exception;
otherwise just return the data at index 1 of the array.

The offer(x) method of the priority queue inserts x into the heap and
then adjusts it so that every node again satisfies the heap property.

We do this in two steps:
a) Add x to the array in the only location we can: if the heap has n

elements they must be at indices 1…n and the new element goes
at index n+1 and we increase the size counter of the heap.

b) “Percolate” the new element up to its proper location. Let
variable hole be the index of the new element: initially n+1.
Keep comparing the value at index hole with the value of its
parent, which is at hole/2. Flip these two elements if they are in
the wrong order and change hole to hole/2. Stop when the value
at hole Is at least as large as its parent.

The only tricky thing about percolateUp() is making sure you stop if
hole gets to 1. You can either test for this in your loop or make it
occur naturally by copying the inserted data value into index 0 of the
array.

So do it: add value 6 to this heap:

3

10 45

12 11

18 25

48 50

12 25

Answer:

3

10 45

12 11

18 25

48 50

12 25 6

3

10 45

12 11

18 25

6 50

12 25 48

Continued next slide

Answer:

3

10 6

12 11

18 25

45 50

12 25 48

6 is greater than its parent
value, so we are done.

3

10 45

12 11

18 25

6 50

12 25 48

Let’s do another one, this time working with the array. Insert 2 into
this heap:

3 10 45 12 11 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Solution:

3 10 45 12 11 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

2

3 10 45 12 2 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

3 2 45 12 10 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

2 3 45 12 10 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

The poll() operation removes and returns the smallest value in the
priority queue. The smallest value, of course, is at the root. If our
queue contains n values they are at indexes 1…n of the heap. The
only node of this tree that we can remove is the one at index n. So we
save the element at index 1, move the data at index n to index 1, and
decrement the size of the heap, reducing the size to n-1. Then we
percolate down the value at the root until all of the nodes satisfy the
heap property.

(Continued next slide)

To percolate down, again we make hole be the index of the element
that is out of place, which is initially index 1. If hole has two children
(i.e., 2*hole+1 <= size, which is the same as 2*hole<size); if the value
at hole is greater than the smaller of its two children we flip them and
make hole be the index of the smaller child, then repeat the test. If
the hole has one child (i.e., 2*hole==size) we compare the value of the
hole to its child and flip them if the value at the hole is larger. If the
hole has no children (2*hole > size) we are done.

3

10 6

12 11

18 25

45 50

12 25 48

So do it: remove the smallest value from this heap:

3

10 6

12 11

18 25

45 50

12 25 48

Solution:

48

10 6

12 11

18 25

45 50

12 25

Continued

Solution:

6

10 48

12 11

18 25

45 50

12 25

48

10 6

12 11

18 25

45 50

12 25

Continued

Solution:

6

10 45

12 11

18 25

48 50

12 25

6

10 48

12 11

18 25

45 50

12 25

The hole has no children
so we are done.

2 3 45 12 10 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Now do it with an array. Remove the root from this heap:

2 3 45 12 10 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

11

Solution:

11 3 45 12 10 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

3 11 45 12 10 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

3 10 45 12 11 48 50 18 25 15

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

The hole (index 5) only has one child
(index 10) and the hole value is smaller,
so we are done.

